Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Radiother Oncol ; 195: 110226, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38492670

ABSTRACT

The European SocieTy for Radiotherapy and Oncology (ESTRO) organized a one-year pilot mentoring programme. At evaluation after one year, both mentors and mentees scored the programme with a median score of 9 on a scale of 10. All of the mentors indicated that they wanted to participate again as mentors.

2.
Radiother Oncol ; 196: 110238, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38527626

ABSTRACT

BACKGROUND: FLASH-radiotherapy (FLASH-RT) is an emerging modality that uses ultra-high dose rates of radiation to enable curative doses to the tumor while preserving normal tissue. The biological studies showed the potential of FLASH-RT to revolutionize radiotherapy cancer treatments. However, the complex biological basis of FLASH-RT is not fully known yet. AIM: Within this context, our aim is to get deeper insights into the biomolecular mechanisms underlying FLASH-RT through Fourier Transform Infrared Microspectroscopy (FTIRM). METHODS: C57Bl/6J female mice were whole brain irradiated at 10 Gy with the eRT6-Oriatron system. 10 Gy FLASH-RT was delivered in 1 pulse of 1.8µs and conventional irradiations at 0.1 Gy/s. Brains were sampled and prepared for analysis 24 h post-RT. FTIRM was performed at the MIRAS beamline of ALBA Synchrotron. Infrared raster scanning maps of the whole mice brain sections were collected for each sample condition. Hyperspectral imaging and Principal Component Analysis (PCA) were performed in several regions of the brain. RESULTS: PCA results evidenced a clear separation between conventional and FLASH irradiations in the 1800-950 cm-1 region, with a significant overlap between FLASH and Control groups. An analysis of the loading plots revealed that most of the variance accounting for the separation between groups was associated to modifications in the protein backbone (Amide I). This protein degradation and/or conformational rearrangement was concomitant with nucleic acid fragmentation/condensation. Cluster separation between FLASH and conventional groups was also present in the 3000-2800 cm-1 region, being correlated with changes in the methylene and methyl group concentrations and in the lipid chain length. Specific vibrational features were detected as a function of the brain region. CONCLUSION: This work provided new insights into the biomolecular effects involved in FLASH-RT through FTIRM. Our results showed that beyond nucleic acid investigations, one should take into account other dose-rate responsive molecules such as proteins, as they might be key to understand FLASH effect.

3.
Article in English | MEDLINE | ID: mdl-38387809

ABSTRACT

PURPOSE: Tumor hypoxia is a major cause of treatment resistance, especially to radiation therapy at conventional dose rate (CONV), and we wanted to assess whether hypoxia does alter tumor sensitivity to FLASH. METHODS AND MATERIALS: We engrafted several tumor types (glioblastoma [GBM], head and neck cancer, and lung adenocarcinoma) subcutaneously in mice to provide a reliable and rigorous way to modulate oxygen supply via vascular clamping or carbogen breathing. We irradiated tumors using a single 20-Gy fraction at either CONV or FLASH, measured oxygen tension, monitored tumor growth, and sampled tumors for bulk RNAseq and pimonidazole analysis. Next, we inhibited glycolysis with trametinib in GBM tumors to enhance FLASH efficacy. RESULTS: Using various subcutaneous tumor models, and in contrast to CONV, FLASH retained antitumor efficacy under acute hypoxia. These findings show that in addition to normal tissue sparing, FLASH could overcome hypoxia-mediated tumor resistance. Follow-up molecular analysis using RNAseq profiling uncovered a FLASH-specific profile in human GBM that involved cell-cycle arrest, decreased ribosomal biogenesis, and a switch from oxidative phosphorylation to glycolysis. Glycolysis inhibition by trametinib enhanced FLASH efficacy in both normal and clamped conditions. CONCLUSIONS: These data provide new and specific insights showing the efficacy of FLASH in a radiation-resistant context, proving an additional benefit of FLASH over CONV.

4.
J Hematol Oncol ; 17(1): 8, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38331849

ABSTRACT

BACKGROUND: It remains challenging to obtain positive outcomes with chimeric antigen receptor (CAR)-engineered cell therapies in solid malignancies, like colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC). A major obstacle is the lack of targetable surface antigens that are not shared by healthy tissues. CD70 emerges as interesting target, due to its stringent expression pattern in healthy tissue and its apparent role in tumor progression in a considerable amount of malignancies. Moreover, CD70 is also expressed on cancer-associated fibroblasts (CAFs), another roadblock for treatment efficacy in CRC and PDAC. We explored the therapeutic potential of CD70 as target for CAR natural killer (NK) cell therapy in CRC, PDAC, focusing on tumor cells and CAFs, and lymphoma. METHODS: RNA-seq data and immunohistochemical analysis of patient samples were used to explore CD70 expression in CRC and PDAC patients. In addition, CD70-targeting CAR NK cells were developed to assess cytotoxic activity against CD70+ tumor cells and CAFs, and the effect of cytokine stimulation on their efficacy was evaluated. The in vitro functionality of CD70-CAR NK cells was investigated against a panel of tumor and CAF cell lines with varying CD70 expression. Lymphoma-bearing mice were used to validate in vivo potency of CD70-CAR NK cells. Lastly, to consider patient variability, CD70-CAR NK cells were tested on patient-derived organoids containing CAFs. RESULTS: In this study, we identified CD70 as a target for tumor cells and CAFs in CRC and PDAC patients. Functional evaluation of CD70-directed CAR NK cells indicated that IL-15 stimulation is essential to obtain effective elimination of CD70+ tumor cells and CAFs, and to improve tumor burden and survival of mice bearing CD70+ tumors. Mechanistically, IL-15 stimulation resulted in improved potency of CD70-CAR NK cells by upregulating CAR expression and increasing secretion of pro-inflammatory cytokines, in a mainly autocrine or intracellular manner. CONCLUSIONS: We disclose CD70 as an attractive target both in hematological and solid tumors. IL-15 armored CAR NK cells act as potent effectors to eliminate these CD70+ cells. They can target both tumor cells and CAFs in patients with CRC and PDAC, and potentially other desmoplastic solid tumors.


Subject(s)
Cancer-Associated Fibroblasts , Lymphoma , Humans , Animals , Mice , Cytotoxicity, Immunologic , Interleukin-15/metabolism , Cell Line, Tumor , Killer Cells, Natural , Immunotherapy, Adoptive/methods , Lymphoma/metabolism , Cytokines/metabolism , CD27 Ligand
5.
Int J Radiat Oncol Biol Phys ; 118(4): 1110-1122, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37951550

ABSTRACT

PURPOSE: The capability of ultrahigh dose rate FLASH radiation therapy to generate the FLASH effect has opened the possibility to enhance the therapeutic index of radiation therapy. The contribution of the immune response has frequently been hypothesized to account for a certain fraction of the antitumor efficacy and tumor kill of FLASH but has yet to be rigorously evaluated. METHODS AND MATERIALS: To investigate the immune response as a potentially important mechanism of the antitumor effect of FLASH, various murine tumor models were grafted either subcutaneously or orthotopically into immunocompetent mice or in moderately and severely immunocompromised mice. Mice were locally irradiated with single dose (20 Gy) or hypofractionated regimens (3 × 8 or 2 × 6 Gy) using FLASH (≥2000 Gy/s) and conventional (CONV) dose rates (0.1 Gy/s), with/without anti-CTLA-4. Tumor growth was monitored over time and immune profiling performed. RESULTS: FLASH and CONV 20 Gy were isoeffective in delaying tumor growth in immunocompetent and moderately immunodeficient hosts and increased tumor doubling time to >14 days versus >7 days in control animals. Similar observations were obtained with a hypofractionated scheme, regardless of the microenvironment (subcutaneous flank vs ortho lungs). Interestingly, in profoundly immunocompromised mice, 20 Gy FLASH retained antitumor activity and significantly increased tumor doubling time to >14 days versus >8 days in control animals, suggesting a possible antitumor mechanism independent of the immune response. Analysis of the tumor microenvironment showed similar immune profiles after both irradiation modalities with significant decrease of lymphoid cells by ∼40% and a corresponding increase of myeloid cells. In addition, FLASH and CONV did not increase transforming growth factor-ß1 levels in tumors compared with unirradiated control animals. Furthermore, when a complete and long-lasting antitumor response was obtained (>140 days), both modalities of irradiation were able to generate a long-term immunologic memory response. CONCLUSIONS: The present results clearly document that the tumor responses across multiple immunocompetent and immunodeficient mouse models are largely dose rate independent and simultaneously contradict a major role of the immune response in the antitumor efficacy of FLASH. Therefore, our study indicates that FLASH is as potent as CONV in modulating antitumor immune response and can be used as an immunomodulatory agent.


Subject(s)
Neoplasms , Animals , Mice , Neoplasms/radiotherapy , Lung , Radiotherapy Dosage , Tumor Microenvironment
6.
Radiol Med ; 129(2): 315-327, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37922004

ABSTRACT

In this narrative review, we aim to explore the ability of radiation therapy to eradicate breast cancer regional node metastasis. It is a journey through data of older trials without systemic therapy showing the magnitude of axillary therapy (surgery versus radiation) on cancer control. Considering that both systemic and loco-regional therapies were shown to reduce any recurrence with a complex interaction, our review includes surgical, radiation, and radiobiology consideration for breast cancer, and provide our view of future practise. The aim is to provide information optimise radiation therapy in the era of primary systemic therapy.


Subject(s)
Breast Neoplasms , Humans , Female , Lymphatic Metastasis/pathology , Breast Neoplasms/pathology , Lymph Node Excision , Radiotherapy, Adjuvant , Axilla/pathology , Axilla/surgery , Lymph Nodes/pathology
7.
Radiother Oncol ; 188: 109906, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690668

ABSTRACT

BACKGROUND AND PURPOSE: The impact of radiotherapy (RT) at ultra high vs conventional dose rate (FLASH vs CONV) on the generation and repair of DNA double strand breaks (DSBs) is an important question that remains to be investigated. Here, we tested the hypothesis as to whether FLASH-RT generates decreased chromosomal translocations compared to CONV-RT. MATERIALS AND METHODS: We used two FLASH validated electron beams and high-throughput rejoin and genome-wide translocation sequencing (HTGTS-JoinT-seq), employing S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs) in HEK239T cells, to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated after various irradiation doses, dose rates and oxygen tensions (normoxic, 21% O2; physiological, 4% O2; hypoxic, 2% and 0.5% O2). Electron irradiation was delivered using a FLASH capable Varian Trilogy and the eRT6/Oriatron at CONV (0.08-0.13 Gy/s) and FLASH (1x102-5x106 Gy/s) dose rates. Related experiments using clonogenic survival and γH2AX foci in the 293T and the U87 glioblastoma lines were also performed to discern FLASH-RT vs CONV-RT DSB effects. RESULTS: Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Furthermore, RT dose rate modality on U87 cells did not change γH2AX foci numbers at 1- and 24-hours post-irradiation nor did this affect 293T clonogenic survival. CONCLUSION: Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

8.
bioRxiv ; 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37034651

ABSTRACT

The molecular and cellular mechanisms driving the enhanced therapeutic ratio of ultra-high dose-rate radiotherapy (FLASH-RT) over slower conventional (CONV-RT) radiotherapy dose-rate remain to be elucidated. However, attenuated DNA damage and transient oxygen depletion are among several proposed models. Here, we tested whether FLASH-RT under physioxic (4% O 2 ) and hypoxic conditions (≤2% O 2 ) reduces genome-wide translocations relative to CONV-RT and whether any differences identified revert under normoxic (21% O 2 ) conditions. We employed high-throughput rejoin and genome-wide translocation sequencing ( HTGTS-JoinT-seq ), using S. aureus and S. pyogenes Cas9 "bait" DNA double strand breaks (DSBs), to measure differences in bait-proximal repair and their genome-wide translocations to "prey" DSBs generated by electron beam CONV-RT (0.08-0.13Gy/s) and FLASH-RT (1×10 2 -5×10 6 Gy/s), under varying ionizing radiation (IR) doses and oxygen tensions. Normoxic and physioxic irradiation of HEK293T cells increased translocations at the cost of decreasing bait-proximal repair but were indistinguishable between CONV-RT and FLASH-RT. Although no apparent increase in chromosome translocations was observed with hypoxia-induced apoptosis, the combined decrease in oxygen tension with IR dose-rate modulation did not reveal significant differences in the level of translocations nor in their junction structures. Thus, Irrespective of oxygen tension, FLASH-RT produces translocations and junction structures at levels and proportions that are indistinguishable from CONV-RT.

9.
Med Phys ; 49(3): 2082-2095, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34997969

ABSTRACT

In their seminal paper from 2014, Fauvadon et al. coined the term FLASH irradiation to describe ultra-high-dose rate irradiation with dose rates greater than 40 Gy/s, which results in delivery times of fractions of a second. The experiments presented in that paper were performed with a high-dose-per-pulse 4.5 MeV electron beam, and the results served as the basis for the modern-day field of FLASH radiation therapy (RT). In this article, we review the studies that have been published after those early experiments, demonstrating the robust effects of FLASH RT on normal tissue sparing in preclinical models. We also outline the various irradiation parameters that have been used. Although the robustness of the biological response has been established, the mechanisms behind the FLASH effect are currently under investigation in a number of laboratories. However, differences in the magnitude of the FLASH effect between experiments in different labs have been reported. Reasons for these differences even within the same animal model are currently unknown, but likely has to do with the marked differences in irradiation parameter settings used. Here, we show that these parameters are often not reported, which complicates large multistudy comparisons. For this reason, we propose a new standard for beam parameter reporting and discuss a systematic path to the clinical translation of FLASH RT.


Subject(s)
Electrons , Radiotherapy , Animals , Clinical Protocols , Radiotherapy/methods , Radiotherapy Dosage
10.
Med Phys ; 49(3): 2055-2067, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34519042

ABSTRACT

Ultra-high-dose rate "FLASH" radiotherapy (FLASH-RT) has been shown to drastically reduce normal tissue toxicities while being as efficacious as conventional dose rate radiotherapy to treat tumors. A large number of preclinical studies describing this so-called FLASH effect have led to the clinical translation of FLASH-RT using ultra-high-dose rate electron and proton beams. Although the vast majority of radiation therapy treatments are delivered using X-rays, few preclinical data using ultra-high-dose rate X-ray irradiation have been published. This review focuses on different methods that can be used to generate ultra-high-dose rate X-rays and their beam characteristics along with their effect on the biological tissues and the perspectives for the development of FLASH-RT with X-rays.


Subject(s)
Neoplasms , Radiation Oncology , Electrons , Humans , Neoplasms/radiotherapy , Radiotherapy/methods , Radiotherapy Dosage , X-Rays
11.
Med Phys ; 49(3): 1993-2013, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34426981

ABSTRACT

Radiation exposures at ultrahigh dose rates (UHDRs) at several orders of magnitude greater than in current clinical radiotherapy (RT) have been shown to manifest differential radiobiological responses compared to conventional (CONV) dose rates. This has led to studies investigating the application of UHDR for therapeutic advantage (FLASH-RT) that have gained significant interest since the initial discovery in 2014 that demonstrated reduced lung toxicity with equivalent levels of tumor control compared with conventional dose-rate RT. Many subsequent studies have demonstrated the potential protective role of FLASH-RT in normal tissues, yet the underlying molecular and cellular mechanisms of the FLASH effect remain to be fully elucidated. Here, we summarize the current evidence of the FLASH effect and review FLASH-RT studies performed in preclinical models of normal tissue response. To critically examine the underlying biological mechanisms of responses to UHDR radiation exposures, we evaluate in vitro studies performed with normal and tumor cells. Differential responses to UHDR versus CONV irradiation recurrently involve reduced inflammatory processes and differential expression of pro- and anti-inflammatory genes. In addition, frequently reduced levels of DNA damage or misrepair products are seen after UHDR irradiation. So far, it is not clear what signal elicits these differential responses, but there are indications for involvement of reactive species. Different susceptibility to FLASH effects observed between normal and tumor cells may result from altered metabolic and detoxification pathways and/or repair pathways used by tumor cells. We summarize the current theories that may explain the FLASH effect and highlight important research questions that are key to a better mechanistic understanding and, thus, the future implementation of FLASH-RT in the clinic.


Subject(s)
Neoplasms , Radiation Oncology , Clinical Protocols , Humans , Neoplasms/radiotherapy , Radiobiology , Radiotherapy Dosage
13.
Clin Cancer Res ; 27(3): 775-784, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33060122

ABSTRACT

PURPOSE: Recent data have shown that single-fraction irradiation delivered to the whole brain in less than tenths of a second using FLASH radiotherapy (FLASH-RT), does not elicit neurocognitive deficits in mice. This observation has important clinical implications for the management of invasive and treatment-resistant brain tumors that involves relatively large irradiation volumes with high cytotoxic doses. EXPERIMENTAL DESIGN: Therefore, we aimed at simultaneously investigating the antitumor efficacy and neuroprotective benefits of FLASH-RT 1-month after exposure, using a well-characterized murine orthotopic glioblastoma model. As fractionated regimens of radiotherapy are the standard of care for glioblastoma treatment, we incorporated dose fractionation to simultaneously validate the neuroprotective effects and optimized tumor treatments with FLASH-RT. RESULTS: The capability of FLASH-RT to minimize the induction of radiation-induced brain toxicities has been attributed to the reduction of reactive oxygen species, casting some concern that this might translate to a possible loss of antitumor efficacy. Our study shows that FLASH and CONV-RT are isoefficient in delaying glioblastoma growth for all tested regimens. Furthermore, only FLASH-RT was found to significantly spare radiation-induced cognitive deficits in learning and memory in tumor-bearing animals after the delivery of large neurotoxic single dose or hypofractionated regimens. CONCLUSIONS: The present results show that FLASH-RT delivered with hypofractionated regimens is able to spare the normal brain from radiation-induced toxicities without compromising tumor cure. This exciting capability provides an initial framework for future clinical applications of FLASH-RT.See related commentary by Huang and Mendonca, p. 662.


Subject(s)
Brain Neoplasms/radiotherapy , Cognitive Dysfunction/prevention & control , Electrons/therapeutic use , Glioblastoma/radiotherapy , Radiation Injuries, Experimental/prevention & control , Animals , Brain/physiopathology , Brain/radiation effects , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Female , Humans , Mice , Organs at Risk/physiopathology , Organs at Risk/radiation effects , Radiation Dose Hypofractionation , Radiation Injuries, Experimental/diagnosis , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/physiopathology , Radiotherapy Dosage , Reactive Oxygen Species
14.
Radiat Res ; 194(6): 625-635, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33348373

ABSTRACT

Persistent vasculature abnormalities contribute to an altered CNS microenvironment that further compromises the integrity of the blood-brain barrier and exposes the brain to a host of neurotoxic conditions. Standard radiation therapy at conventional (CONV) dose rate elicits short-term damage to the blood-brain barrier by disrupting supportive cells, vasculature volume and tight junction proteins. While current clinical applications of cranial radiotherapy use dose fractionation to reduce normal tissue damage, these treatments still cause significant complications. While dose escalation enhances treatment of radiation-resistant tumors, methods to subvert normal tissue damage are clearly needed. In this regard, we have recently developed a new modality of irradiation based on the use of ultra-high-dose-rate FLASH that does not induce the classical pathogenic patterns caused by CONV irradiation. In previous work, we optimized the physical parameters required to minimize normal brain toxicity (i.e., FLASH, instantaneous intra-pulse dose rate, 6.9 · 106 Gy/s, at a mean dose rate of 2,500 Gy/s), which we then used in the current study to determine the effect of FLASH on the integrity of the vasculature and the blood-brain barrier. Both early (24 h, one week) and late (one month) timepoints postirradiation were investigated using C57Bl/6J female mice exposed to whole-brain irradiation delivered in single doses of 25 Gy and 10 Gy, respectively, using CONV (0.09 Gy/s) or FLASH (>106 Gy/s). While the majority of changes found one day postirradiation were minimal, FLASH was found to reduce levels of apoptosis in the neurogenic regions of the brain at this time. At one week and one month postirradiation, CONV was found to induce vascular dilation, a well described sign of vascular alteration, while FLASH minimized these effects. These results were positively correlated with and temporally coincident to changes in the immunostaining of the vasodilator eNOS colocalized to the vasculature, suggestive of possible dysregulation in blood flow at these latter times. Overall expression of the tight junction proteins, occludin and claudin-5, which was significantly reduced after CONV irradiation, remained unchanged in the FLASH-irradiated brains at one and four weeks postirradiation. Our data further confirm that, compared to isodoses of CONV irradiation known to elicit detrimental effects, FLASH does not damage the normal vasculature. These data now provide the first evidence that FLASH preserves microvasculature integrity in the brain, which may prove beneficial to cognition while allowing for better tumor control in the clinic.


Subject(s)
Enzyme Induction/radiation effects , Nitric Oxide Synthase Type III/biosynthesis , Radiotherapy/methods , Tight Junctions/radiation effects , Vasodilation/radiation effects , Animals , Apoptosis/radiation effects , Female , Mice , Mice, Inbred C57BL , Microvessels/enzymology , Microvessels/pathology , Microvessels/radiation effects
16.
Radiat Res ; 194(6): 636-645, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32853387

ABSTRACT

Encephalic radiation therapy delivered at a conventional dose rate (CONV, 0.1-2.0 Gy/min) elicits a variety of temporally distinct damage signatures that invariably involve persistent indications of neuroinflammation. Past work has shown an involvement of both the innate and adaptive immune systems in modulating the central nervous system (CNS) radiation injury response, where elevations in astrogliosis, microgliosis and cytokine signaling define a complex pattern of normal tissue toxicities that never completely resolve. These side effects constitute a major limitation in the management of CNS malignancies in both adult and pediatric patients. The advent of a novel ultra-high dose-rate irradiation modality termed FLASH radiotherapy (FLASH-RT, instantaneous dose rates ≥106 Gy/s; 10 Gy delivered in 1-10 pulses of 1.8 µs) has been reported to minimize a range of normal tissue toxicities typically concurrent with CONV exposures, an effect that has been coined the "FLASH effect." Since the FLASH effect has now been found to significantly limit persistent inflammatory signatures in the brain, we sought to further elucidate whether changes in astrogliosis might account for the differential dose-rate response of the irradiated brain. Here we report that markers selected for activated astrogliosis and immune signaling in the brain (glial fibrillary acidic protein, GFAP; toll-like receptor 4, TLR4) are expressed at reduced levels after FLASH irradiation compared to CONV-irradiated animals. Interestingly, while FLASH-RT did not induce astrogliosis and TLR4, the expression level of complement C1q and C3 were found to be elevated in both FLASH and CONV irradiation modalities compared to the control. Although functional outcomes in the CNS remain to be cross-validated in response to the specific changes in protein expression reported, the data provide compelling evidence that distinguishes the dose-rate response of normal tissue injury in the irradiated brain.


Subject(s)
Brain/radiation effects , Gliosis/prevention & control , Radiotherapy Dosage , Radiotherapy/methods , Algorithms , Animals , Brain/metabolism , Brain/pathology , Complement Activation , Dose-Response Relationship, Radiation , Female , Mice , Mice, Inbred C57BL , Radiation Injuries, Experimental/prevention & control , Toll-Like Receptor 4/metabolism
17.
Cancers (Basel) ; 12(6)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599789

ABSTRACT

Major advances in high precision treatment delivery and imaging have greatly improved the tolerance of radiotherapy (RT); however, the selective sparing of normal tissue and the reduction of neurocognitive side effects from radiation-induced toxicities remain significant problems for pediatric patients with brain tumors. While the overall survival of pediatric patients afflicted with medulloblastoma (MB), the most common type primary brain cancer in children, remains high (≥80%), lifelong neurotoxic side-effects are commonplace and adversely impact patients' quality of life. To circumvent these clinical complications, we have investigated the capability of ultra-high dose rate FLASH-radiotherapy (FLASH-RT) to protect the radiosensitive juvenile mouse brain from normal tissue toxicities. Compared to conventional dose rate (CONV) irradiation, FLASH-RT was found to ameliorate radiation-induced cognitive dysfunction in multiple independent behavioral paradigms, preserve developing and mature neurons, minimize microgliosis and limit the reduction of the plasmatic level of growth hormone. The protective "FLASH effect" was pronounced, especially since a similar whole brain dose of 8 Gy delivered with CONV-RT caused marked reductions in multiple indices of behavioral performance (objects in updated location, novel object recognition, fear extinction, light-dark box, social interaction), reductions in the number of immature (doublecortin+) and mature (NeuN+) neurons and increased neuroinflammation, adverse effects that were not found with FLASH-RT. Our data point to a potentially innovative treatment modality that is able to spare, if not prevent, many of the side effects associated with long-term treatment that disrupt the long-term cognitive and emotional well-being of medulloblastoma survivors.

18.
Front Oncol ; 10: 602763, 2020.
Article in English | MEDLINE | ID: mdl-33738245

ABSTRACT

Human stem cell-derived extracellular vesicles (EV) provide many advantages over cell-based therapies for the treatment of functionally compromised tissue beds and organ sites. Here we sought to determine whether human embryonic stem cell (hESC)-derived EV could resolve in part, the adverse late normal tissue complications associated with exposure of the lung to ionizing radiation. The hESC-derived EV were systemically administered to the mice via the retro-orbital sinus to explore the potential therapeutic benefits following exposure to high thoracic doses of radiation (14 Gy). Data demonstrated that hESC-derived EV treatment significantly improved overall survival of the irradiated cohorts (P < 0.001). Increased survival was also associated with significant reductions in lung fibrosis as quantified by CBCT imaging (P < 0.01, 2 weeks post-irradiation). Qualitative histological analyses revealed reduced indications of radiation induced pulmonary injury in animals treated with EV. EV were then subjected to a rigorous proteomic analysis to ascertain the potential bioactive cargo that may prove beneficial in ameliorating radiation-induced normal tissue toxicities in the lung. Proteomics validated several consensus exosome markers (e.g., CD68) and identified major classes of proteins involved in nuclear pore complexes, epigenetics, cell cycle, growth and proliferation, DNA repair, antioxidant function, and cellular metabolism (TCA cycle and oxidative phosphorylation, OXYPHOS). Interestingly, EV were also found to contain mitochondrial components (mtDNA, OXYPHOS protein subunits), which may contribute to the metabolic reprograming and recovery of radiation-injured pulmonary tissue. To evaluate the safety of EV treatments in the context of the radiotherapeutic management of tumors, mice harboring TC1 tumor xenografts were subjected to the same EV treatments shown to forestall lung fibrosis. Data indicated that over the course of one month, no change in the growth of flank tumors between treated and control cohorts was observed. In conclusion, present findings demonstrate that systemic delivery of hESC-derived EV could ameliorate radiation-induced normal tissue complications in the lung, through a variety of potential mechanisms based on EV cargo analysis.

19.
Radiother Oncol ; 139: 11-17, 2019 10.
Article in English | MEDLINE | ID: mdl-31253466

ABSTRACT

Over the past decades, technological advances have transformed radiation therapy (RT) into a precise and powerful treatment for cancer patients. Nevertheless, the treatment of radiation-resistant tumors is still restricted by the dose-limiting normal tissue complications. In this context, FLASH-RT is emerging in the field. Consisting of delivering doses within an extremely short irradiation time, FLASH-RT has been identified as a promising new tool to enhance the differential effect between tumors and normal tissues. Indeed, preclinical studies on various animal models and a veterinarian clinical trial have recently shown that compared to conventional dose-rate RT, FLASH-RT could control tumors while minimizing normal tissue toxicity. In the present review, we summarize the main data supporting the clinical translation of FLASH-RT and explore its feasibility, the key irradiation parameters and the potential technologies needed for a successful clinical translation.


Subject(s)
Neoplasms/radiotherapy , Radiotherapy/methods , Animals , Humans , Radiotherapy Dosage
20.
Proc Natl Acad Sci U S A ; 116(22): 10943-10951, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31097580

ABSTRACT

Here, we highlight the potential translational benefits of delivering FLASH radiotherapy using ultra-high dose rates (>100 Gy⋅s-1). Compared with conventional dose-rate (CONV; 0.07-0.1 Gy⋅s-1) modalities, we showed that FLASH did not cause radiation-induced deficits in learning and memory in mice. Moreover, 6 months after exposure, CONV caused permanent alterations in neurocognitive end points, whereas FLASH did not induce behaviors characteristic of anxiety and depression and did not impair extinction memory. Mechanistic investigations showed that increasing the oxygen tension in the brain through carbogen breathing reversed the neuroprotective effects of FLASH, while radiochemical studies confirmed that FLASH produced lower levels of the toxic reactive oxygen species hydrogen peroxide. In addition, FLASH did not induce neuroinflammation, a process described as oxidative stress-dependent, and was also associated with a marked preservation of neuronal morphology and dendritic spine density. The remarkable normal tissue sparing afforded by FLASH may someday provide heretofore unrealized opportunities for dose escalation to the tumor bed, capabilities that promise to hasten the translation of this groundbreaking irradiation modality into clinical practice.


Subject(s)
Cognitive Dysfunction , Neuroprotection/radiation effects , Radiation Dosage , Radiotherapy/methods , Reactive Oxygen Species/metabolism , Animals , Brain/pathology , Brain/radiation effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Female , Inflammation , Mice , Mice, Inbred C57BL , Radiotherapy/adverse effects , Reactive Oxygen Species/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...